

Effects of p38α kinase inhibitor on basal forebrain volume in Alzheimer's disease

<u>Chen-Pei Lin¹</u>, Samantha Noteboom¹, Marloes Bet¹, John Alam³, Niels Prins⁴, Frederik Barkhof^{2,5}, Laura Jonkman¹, Menno Schoonheim¹

¹Department of Anatomy and Neurosciences & ²Department of radiology and nuclear medicine, Amsterdam UMC - location Vumc

³EIP Pharma, Inc., Boston, MA, USA; ⁴Brain Research Center, Amsterdam

⁵Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK

Ú

Disclosures

- *Dr. Alam* is the employee of, and holder of stock in EIP Pharma, Inc, the sponsor of the clinical trial
- Dr. Prins is the CEO and co-owner of Brain Research Center
- <u>Prof. Barkhof</u> receives grants from EPSRC, EU-JU (IMI), GEHC, ADDI and NIHR Biomedical Research Centre at UCL Hospitals NHS Foundation Trust, as well as personal fees from USC-ATRC, Biogen, Roche, IXICO, Combinostics, Prothena, and Merck; and is the founder and a stockholder of Queen Square Analytics.
- <u>Dr. Jonkman</u> receives research support from the Alzheimer Association, the Michael J Fox foundation, Alzheimer Nederland, Stichting Parkinson Fonds, Health Holland, NWO and ZonMW.
- <u>Dr. Schoonheim</u> serves on the editorial board of Neurology and Frontiers in Neurology, receives research support from the Dutch MS Research Foundation, Eurostars-EUREKA, ARSEP, Amsterdam Neuroscience, MAGNIMS and ZonMW and has served as a consultant for or received research support from Atara Biotherapeutics, Biogen, Celgene/Bristol Meyers Squibb, EIP Pharma, Sanofi-Genzyme, MedDay and Merck.

Cholinergic dysfunction in Alzheimer's disease (AD)

Nucleus basalis of Meynert (NbM)

3

Ŭ

p38α inhibitor neflamapimod (NFMD) reduces CSF tau in AD

Munoz and Ammit, Neuropharmacology, 2010; Prins et al, Alz Res Ther, 2021, 27:106; Alam, J of Alzheimer's, 2015

NFMD restores cholinergic neurons in preclinical mouse model

NFMD improves cognition and function in a clinical trial in dementia with Lewy body

Table 2 | Efficacy outcome measures in the clinical study

Û

	All Neflan	napimod (NFN	MD; includes 40 mg BID and 40 mg TID participants) vs. All Placebo				
Outcome measure	Number of particpants		Mean baseline values		Change from baseline		
	NFMD	Placebo	NFMD	Placebo	Drug-Placebo Difference On-Study (95% CI)	p-value	Cohen's d Effect Size for Improvement - d
NTB* Composite	39	37	0.04	0.05	0.04 (-0.11, 0.19)	>0.2	0.10
Attention Composite	39	36	0.04	-0.02	0.14 (-0.06, 0.35)	0.17	0.18
Clinical Dementia Rating Sum of Boxes (CDR-SB)	41	42	4.9	5.1	-0.45 (-0.83, -0.06)	0.023	0.31
International Shopping List Test (ISLT)	42	42	14.3	13.6	-0.17 (-1.61, 0.87)	>0.2	-0.02
Timed Up and Go (TUG)	39	38	12.7	13.5	-1.4 (-2.70.1)	0.044	0.22

e

Ú

MRI-measured NbM integrity are potential biomarker for AD progression and treatment effect

- NbM structural alteration is an upstream event for AD progression in the brain
- Microstructural alteration in the NbM is a proxy of cholinergic loss.
- Functional changes in NbM connectivity correlates with memory function in preclinical AD.

Aim: Assess the effects of NFMD on the NbM in early AD using structural and functional MRI

Study design

Enrollment

RESEARCH ARTICLE

An exploratory clinical study of $p38\alpha$ kinase inhibition in Alzheimer's disease

Philip Scheltens^{1,} (b), Niels Prins^{1,2}, Adriaan Lammertsma³, Maqsood Yaqub³, Alida Gouw^{1,4}, Alle Meije Wink³, Hui-May Chu⁵, Bart N. M. van Berckel³ & John Alam⁶

Inclusion criteria

- Double-blind dose-controlled
- Male or female, age 60–85 years with MCI due to AD or mild AD
- Elevated ¹¹C-PiB PET amyloid plaque load
- MMSE between 20-28

Amsterdam UMC ZEIP

VUmc (1)

3D T1 MRI

- Global brain volume (sienax)
- NbM volume (NbM probabilistic atlas and FSL registration)

SIENAX

Kilimann et al., 2014

Resting-state functional MRI

Default-mode
Frontoparietal
Attention

- Visual
 - Sensorimotor
- Limbic
- Deep grey matter

Static: correlation

Increased NbM volume at follow-up

Ŵ

EOT=end of treatment

Increased dynamic connectivity between NbM-deep grey matter (DGM)

NbM-DGM dynamic connectivity **Dynamic: Coefficient of variation**

%Change in dynamic connectivity

No change in static connectivity

6/13 participants >10% increase

EOT=end of treatment

Discussion

Increased NbM volume and NbM-DGM connectivity in early AD patients treated with NFMD

(Jiang et al., 2022)

 NbM volume reduces 0.5%-1% annually in untreated AD, and is correlated with cholinergic

neuronal loss.

 In AD, cholinergic neurons shrink, are depleted of phenotypic markers, and/or persist in an atrophic

state

Mufson et al. *Expert Rev Neurotherpeutics*, 2006; Schmitz et al. *Nat Comm*, 2016; Lin et al. *Brain*, 2022; Chiesa et al.Radiology, 2018; Carmo et al. Cells, 2022; Fernández-Cabello et al. *Brain*, 2020

Conclusions

- Neflamapimod treatment is associated with increasing NbM volume and NbM-DGM dynamic connectivity, suggesting p38α kinase inhibition has a positive impact on the cholinergic degenerative process in AD.
- Functional and structural MRI assessments of the NbM may be potential biomarkers for therapeutic effects.
- Further evaluation of the potential effect of neflamapimod on the NbM in *placebocontrolled clinical trials* in AD and correlation with *clinical outcomes* is warranted.

Acknowledgement

Trend of correlation between NbM volume and NbM-DGM dynamic connectivity at follow-up

N

